A moduli approach to quadratic $\mathbb{Q}$-curves realizing projective mod $p$ Galois representations
Fernández , Julio
Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, p. 1-30 / Harvested from Project Euclid
For a fixed odd prime $p$ and a representation $\varrho$ of the absolute Galois group of $\mathbb{Q}$ into the projective group ${\rm PGL}_2(\mathbb{F}_p)$, we provide the twisted modular curves whose rational points supply the quadratic $\mathbb{Q}$-curves of degree $N$ prime to $p$ that realize $\varrho$ through the Galois action on their $p$-torsion modules. The modular curve to twist is either the fiber product of $X_0(N)$ and $X(p)$ or a certain quotient of Atkin-Lehner type, depending on the value of $N$ mod $p$. For our purposes, a special care must be taken in fixing rational models for these modular curves and in studying their automorphisms. By performing some genus computations, we obtain as a by-product some finiteness results on the number of quadratic $\mathbb{Q}$-curves of a given degree $N$ realizing $\varrho$.
Publié le : 2008-04-15
Classification:  mod $p$ Galois representations,  elliptic curves,  $p$-torsion points,  quadratic $\mathbb{Q}$-curves,  twisted modular curves,  moduli problem,  11G15,  14K10,  11F80,  11G05,  14G35,  14H10,  14H52
@article{1216247093,
     author = {Fern\'andez ,  Julio},
     title = {A moduli approach to quadratic $\mathbb{Q}$-curves
 realizing projective mod $p$ Galois representations},
     journal = {Rev. Mat. Iberoamericana},
     volume = {24},
     number = {2},
     year = {2008},
     pages = { 1-30},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216247093}
}
Fernández ,  Julio. A moduli approach to quadratic $\mathbb{Q}$-curves
 realizing projective mod $p$ Galois representations. Rev. Mat. Iberoamericana, Tome 24 (2008) no. 2, pp.  1-30. http://gdmltest.u-ga.fr/item/1216247093/