Asymptotic equivalence for nonparametric regression with multivariate and random design
Reiß, Markus
Ann. Statist., Tome 36 (2008) no. 1, p. 1957-1982 / Harvested from Project Euclid
We show that nonparametric regression is asymptotically equivalent, in Le Cam’s sense, to a sequence of Gaussian white noise experiments as the number of observations tends to infinity. We propose a general constructive framework, based on approximation spaces, which allows asymptotic equivalence to be achieved, even in the cases of multivariate and random design.
Publié le : 2008-08-15
Classification:  Le Cam deficiency,  equivalence of experiments,  approximation space,  interpolation,  Gaussian white noise,  62G08,  62G20,  62B15
@article{1216237305,
     author = {Rei\ss , Markus},
     title = {Asymptotic equivalence for nonparametric regression with multivariate and random design},
     journal = {Ann. Statist.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 1957-1982},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216237305}
}
Reiß, Markus. Asymptotic equivalence for nonparametric regression with multivariate and random design. Ann. Statist., Tome 36 (2008) no. 1, pp.  1957-1982. http://gdmltest.u-ga.fr/item/1216237305/