A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series
Moulines, E. ; Roueff, F. ; Taqqu, M. S.
Ann. Statist., Tome 36 (2008) no. 1, p. 1925-1956 / Harvested from Project Euclid
We consider a time series X={Xk, k∈ℤ} with memory parameter d0∈ℝ. This time series is either stationary or can be made stationary after differencing a finite number of times. We study the “local Whittle wavelet estimator” of the memory parameter d0. This is a wavelet-based semiparametric pseudo-likelihood maximum method estimator. The estimator may depend on a given finite range of scales or on a range which becomes infinite with the sample size. We show that the estimator is consistent and rate optimal if X is a linear process, and is asymptotically normal if X is Gaussian.
Publié le : 2008-08-15
Classification:  Long memory,  semiparametric estimation,  wavelet analysis,  62M15,  62M10,  62G05,  62G20,  60G18
@article{1216237304,
     author = {Moulines, E. and Roueff, F. and Taqqu, M. S.},
     title = {A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series},
     journal = {Ann. Statist.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 1925-1956},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216237304}
}
Moulines, E.; Roueff, F.; Taqqu, M. S. A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series. Ann. Statist., Tome 36 (2008) no. 1, pp.  1925-1956. http://gdmltest.u-ga.fr/item/1216237304/