Decomposable Ultrafilters and Possible Cofinalities
Lipparini, Paolo
Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, p. 307-312 / Harvested from Project Euclid
We use Shelah's theory of possible cofinalities in order to solve some problems about ultrafilters. Theorem: Suppose that $\lambda$ is a singular cardinal, $\lambda ' \lessthan \lambda$ , and the ultrafilter $D$ is $\kappa$ -decomposable for all regular cardinals $\kappa$ with $\lambda '\lessthan \kappa \lessthan \lambda$ . Then $D$ is either $\lambda$ -decomposable or $\lambda ^+$ -decomposable. Corollary: If $\lambda$ is a singular cardinal, then an ultrafilter is ( $\lambda$ , $\lambda$ )-regular if and only if it is either $\operator{cf} \lambda$ -decomposable or $\lambda^+$ -decomposable. We also give applications to topological spaces and to abstract logics.
Publié le : 2008-07-15
Classification:  $λ-decomposable, (μ,λ)-regular (ultra)-filter,  cofinality of a partial order,  (productive) [μ,λ]-compactness,  03C20,  03E04,  03C95,  54D20
@article{1216152553,
     author = {Lipparini, Paolo},
     title = {Decomposable Ultrafilters and Possible Cofinalities},
     journal = {Notre Dame J. Formal Logic},
     volume = {49},
     number = {1},
     year = {2008},
     pages = { 307-312},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216152553}
}
Lipparini, Paolo. Decomposable Ultrafilters and Possible Cofinalities. Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, pp.  307-312. http://gdmltest.u-ga.fr/item/1216152553/