We use Shelah's theory of possible cofinalities in order to
solve some problems about ultrafilters. Theorem: Suppose that $\lambda$
is a singular cardinal, $\lambda ' \lessthan \lambda$ , and the ultrafilter $D$
is
$\kappa$
-decomposable for all regular cardinals $\kappa$
with $\lambda '\lessthan \kappa \lessthan \lambda$ . Then $D$
is either
$\lambda$ -decomposable or $\lambda ^+$ -decomposable.
Corollary: If $\lambda$
is a singular cardinal, then
an ultrafilter is ( $\lambda$ , $\lambda$ )-regular
if and only if it is either $\operator{cf} \lambda$ -decomposable
or $\lambda^+$ -decomposable.
We also give applications to topological spaces and to abstract logics.
Publié le : 2008-07-15
Classification:
$λ-decomposable, (μ,λ)-regular
(ultra)-filter,
cofinality of a partial order,
(productive) [μ,λ]-compactness,
03C20,
03E04,
03C95,
54D20
@article{1216152553,
author = {Lipparini, Paolo},
title = {Decomposable Ultrafilters and Possible Cofinalities},
journal = {Notre Dame J. Formal Logic},
volume = {49},
number = {1},
year = {2008},
pages = { 307-312},
language = {en},
url = {http://dml.mathdoc.fr/item/1216152553}
}
Lipparini, Paolo. Decomposable Ultrafilters and Possible Cofinalities. Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, pp. 307-312. http://gdmltest.u-ga.fr/item/1216152553/