From classical, Fraïissé-homogeneous, ( $\leq \omega$ )-categorical
theories over finite relational languages, we construct intuitionistic
theories that are complete, prove negations of classical tautologies,
and admit quantifier elimination.
We also determine the intuitionistic universal fragments of these theories.
@article{1216152551,
author = {Ellison, Ben and Fleischmann, Jonathan and McGinn, Dan and Ruitenburg, Wim},
title = {Quantifier Elimination for a Class of Intuitionistic Theories},
journal = {Notre Dame J. Formal Logic},
volume = {49},
number = {1},
year = {2008},
pages = { 281-293},
language = {en},
url = {http://dml.mathdoc.fr/item/1216152551}
}
Ellison, Ben; Fleischmann, Jonathan; McGinn, Dan; Ruitenburg, Wim. Quantifier Elimination for a Class of Intuitionistic Theories. Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, pp. 281-293. http://gdmltest.u-ga.fr/item/1216152551/