Quantifier Elimination for a Class of Intuitionistic Theories
Ellison, Ben ; Fleischmann, Jonathan ; McGinn, Dan ; Ruitenburg, Wim
Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, p. 281-293 / Harvested from Project Euclid
From classical, Fraïissé-homogeneous, ( $\leq \omega$ )-categorical theories over finite relational languages, we construct intuitionistic theories that are complete, prove negations of classical tautologies, and admit quantifier elimination. We also determine the intuitionistic universal fragments of these theories.
Publié le : 2008-07-15
Classification:  intuitionistic predicate logic,  quantifier elimination,  Kripke model,  Fraïssé homogeneous,  normal forms,  03C10,  03F55,  03C35,  03C90,  03F05
@article{1216152551,
     author = {Ellison, Ben and Fleischmann, Jonathan and McGinn, Dan and Ruitenburg, Wim},
     title = {Quantifier Elimination for a Class of Intuitionistic Theories},
     journal = {Notre Dame J. Formal Logic},
     volume = {49},
     number = {1},
     year = {2008},
     pages = { 281-293},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216152551}
}
Ellison, Ben; Fleischmann, Jonathan; McGinn, Dan; Ruitenburg, Wim. Quantifier Elimination for a Class of Intuitionistic Theories. Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, pp.  281-293. http://gdmltest.u-ga.fr/item/1216152551/