$L^{p}$-$L^{q}$ estimates for wave equations and the Kirchhoff equation
Matsuyama, Tokio
Osaka J. Math., Tome 45 (2008) no. 1, p. 491-510 / Harvested from Project Euclid
The aim of this paper is to derive $L^{p}$-$L^{q}$ estimates for strictly hyperbolic equations with time-dependent coefficients which are of Lipschitz class. Further-more, $L^{p}$-$L^{q}$ estimates for Kirchhoff equation can be obtained by applying the Schauder-Tychonoff fixed point theorem.
Publié le : 2008-06-15
Classification:  35L05,  35L10
@article{1216151111,
     author = {Matsuyama, Tokio},
     title = {$L^{p}$-$L^{q}$ estimates for wave equations and the Kirchhoff equation},
     journal = {Osaka J. Math.},
     volume = {45},
     number = {1},
     year = {2008},
     pages = { 491-510},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1216151111}
}
Matsuyama, Tokio. $L^{p}$-$L^{q}$ estimates for wave equations and the Kirchhoff equation. Osaka J. Math., Tome 45 (2008) no. 1, pp.  491-510. http://gdmltest.u-ga.fr/item/1216151111/