We study the $n$ -dimensional category $\mathrm{cat}_{n}(X)$ of a compact space $X$ , a counterpart to Lusternik-Schnirelmann category in the context of $n$ -homotopy theory, and prove Menger manifold analogues of results due to Montejano and Wong for Hilbert cube manifolds.
@article{1213023729,
author = {KAWAMURA, Kazuhiro},
title = {Lusternik-Schnirelmann type invariants for Menger manifolds},
journal = {J. Math. Soc. Japan},
volume = {53},
number = {3},
year = {2001},
pages = { 669-685},
language = {en},
url = {http://dml.mathdoc.fr/item/1213023729}
}
KAWAMURA, Kazuhiro. Lusternik-Schnirelmann type invariants for Menger manifolds. J. Math. Soc. Japan, Tome 53 (2001) no. 3, pp. 669-685. http://gdmltest.u-ga.fr/item/1213023729/