Structure of locally convex quasi $C^*$ -algebras
BAGARELLO, Fabio ; FRAGOULOPOULOU, Maria ; INOUE, Atsushi ; TRAPANI, Camillo
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 511-549 / Harvested from Project Euclid
The completion of a (normed) $C^*$ -algebra $\A_0[\| \cdot \|_0]$   with respect to a locally convex topology $\tau$   on $\A_0$ that makes the multiplication of $\A_0$   separately continuous is, in general, a quasi $*$ -algebra, and not a locally convex $*$ -algebra [10], [15]. In this way, one is led to consideration of locally convex quasi $C^*$ -algebras, which generalize $C^*$ -algebras in the context of quasi $*$ -algebras. Examples are given and the structure of these relatives of $C^*$ -algebras is investigated.
Publié le : 2008-04-15
Classification:  quasi *-algebras,  quasi-positivity,  locally convex quasi $C^*$-algebras,  unbounded *-representations,  47L60,  46K10,  46K70,  46L05
@article{1212156661,
     author = {BAGARELLO, Fabio and FRAGOULOPOULOU, Maria and INOUE, Atsushi and TRAPANI, Camillo},
     title = {Structure of locally convex quasi $C^*$ -algebras},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 511-549},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1212156661}
}
BAGARELLO, Fabio; FRAGOULOPOULOU, Maria; INOUE, Atsushi; TRAPANI, Camillo. Structure of locally convex quasi $C^*$ -algebras. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  511-549. http://gdmltest.u-ga.fr/item/1212156661/