A classification of graded extensions in a skew Laurent polynomial ring
XIE, Guangming ; MARUBAYASHI, Hidetoshi
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 423-443 / Harvested from Project Euclid
Let $V$   be a total valuation ring of a division ring $K$   with an automorphism $\sigma$   and let $A=\oplus _{i\in \bm{Z}} A_i X^{i}$   be a graded extension of $V$   in $ K[X,X^{-1};\sigma]$ , the skew Laurent polynomial ring. We classify $A$   by distinguishing four different types based on the properties of $A_1$   and $A_{-1}$ . A complete description of $A_{i}$   for all $i\in \bm{Z}$   is given in the case where $A_{1}$   is a finitely generated left $O_{l}(A_1)$ -ideal.
Publié le : 2008-04-15
Classification:  graded extension,  total valuation ring,  skew Laurent polynomial ring,  homogeneous element,  division ring,  16W50
@article{1212156657,
     author = {XIE, Guangming and MARUBAYASHI, Hidetoshi},
     title = {A classification of graded extensions in a skew Laurent polynomial ring},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 423-443},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1212156657}
}
XIE, Guangming; MARUBAYASHI, Hidetoshi. A classification of graded extensions in a skew Laurent polynomial ring. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  423-443. http://gdmltest.u-ga.fr/item/1212156657/