Déformations de réseaux dans certains groupes résolubles
ROUSSEAU, Cédric
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 397-421 / Harvested from Project Euclid
We aim to study local rigidity and deformations for the following class of groups: the semidirect product $\Gamma=\bm{Z}^{n}\rtimes_{A}\bm{Z}$   where $n\geq 2$   is an integer and $A$   is a hyperbolic matrix in $\SL{n}{Z}$ , considered first as a lattice in the solvable Lie group $G=\bm{R}^{n}\rtimes_{A}\bm{R}$ , then as a subgroup of the semisimple Lie group $\SL{n+1}{R}$ . We will notably show that, although $\Gamma$   is locally rigid neither in $G$   nor in $H$ , it is locally $\SL{n+1}{R}$ -rigid in $G$   in the sense that every small enough deformation of $\Gamma$   in $G$   is conjugated to $\Gamma$   by an element of $\SL{n+1}{R}$ .
Publié le : 2008-04-15
Classification:  local rigidity,  lattices in solvable Lie groups,  group cohomology,  22E25,  22E40
@article{1212156656,
     author = {ROUSSEAU, C\'edric},
     title = {D\'eformations de r\'eseaux dans certains groupes r\'esolubles},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 397-421},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1212156656}
}
ROUSSEAU, Cédric. Déformations de réseaux dans certains groupes résolubles. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  397-421. http://gdmltest.u-ga.fr/item/1212156656/