Varieties of small degree with respect to codimension and ample vector bundles
LANTERI, Antonio ; NOVELLI, Carla
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 341-361 / Harvested from Project Euclid
Let  $\mathscr{E}$   be an ample vector bundle on a projective manifold $X$ , with a section vanishing on a smooth subvariety $Z$   of the expected dimension, and let $H$   be an ample line bundle on $X$   inducing a very ample ample line bundle $H_Z$   on $Z$ . Triplets $(X, \mathscr{E}, H)$ as above are classified assuming that $Z$ , embedded by $|H_Z|$ , is a variety of small degree with respect to codimension.
Publié le : 2008-04-15
Classification:  ample vector bundles,  special varieties,  $\Delta$-genus,  adjunction theory,  Fano manifolds,  classification,  14J60,  14F05,  14C20,  14J40,  14N30
@article{1212156654,
     author = {LANTERI, Antonio and NOVELLI, Carla},
     title = {Varieties of small degree with respect to codimension and ample vector bundles},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 341-361},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1212156654}
}
LANTERI, Antonio; NOVELLI, Carla. Varieties of small degree with respect to codimension and ample vector bundles. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  341-361. http://gdmltest.u-ga.fr/item/1212156654/