Let R be a prime ring and F and G be generalized derivations of R with associated derivations d and g respectively. In the present paper, we shall investigate the commutativity of R admitting generalized derivations F and G satisfying any one of the properties: (i) F(x)x = x G(x), (ii) F(x2) = x2 , (iii) [F(x), y] = [x, G(y)], (iv) d(x)F(y) = xy, (v) F([x, y]) = [F(x), y] + [d(y), x] and (vi) F(x ◦ y) = F(x) ◦ y − d(y) ◦ x for all x, y in some appropriate subset of R.
@article{12119, title = {s- ideals and generalized derivations in s-prime rings }, journal = {Boletim da Sociedade Paranaense de Matem\'atica}, volume = {31}, year = {2013}, doi = {10.5269/bspm.v31i2.12119}, language = {EN}, url = {http://dml.mathdoc.fr/item/12119} }
Rais Khan, M.; Arora, Deepa; Ali Khan, M. σ- ideals and generalized derivations in σ-prime rings . Boletim da Sociedade Paranaense de Matemática, Tome 31 (2013) . doi : 10.5269/bspm.v31i2.12119. http://gdmltest.u-ga.fr/item/12119/