Central limit theorem for signal-to-interference ratio of reduced rank linear receiver
Pan, G. M. ; Zhou, W.
Ann. Appl. Probab., Tome 18 (2008) no. 1, p. 1232-1270 / Harvested from Project Euclid
Let $\mathbf{s}_{k}=\frac{1}{\sqrt{N}}(v_{1k},\ldots,v_{Nk})^{T}$ , with {vik, i, k=1, …} independent and identically distributed complex random variables. Write Sk=(s1, …, sk−1, sk+1, …, sK), Pk=diag(p1, …, pk−1, pk+1, …, pK), Rk=(SkPkSk*2I) and Akm=[sk, Rksk, …, Rkm−1sk]. Define βkm=pksk*Akm(Akm*×RkAkm)−1Akm*sk, referred to as the signal-to-interference ratio (SIR) of user k under the multistage Wiener (MSW) receiver in a wireless communication system. It is proved that the output SIR under the MSW and the mutual information statistic under the matched filter (MF) are both asymptotic Gaussian when N/K→c>0. Moreover, we provide a central limit theorem for linear spectral statistics of eigenvalues and eigenvectors of sample covariance matrices, which is a supplement of Theorem 2 in Bai, Miao and Pan [Ann. Probab. 35 (2007) 1532–1572]. And we also improve Theorem 1.1 in Bai and Silverstein [Ann. Probab. 32 (2004) 553–605].
Publié le : 2008-06-15
Classification:  Random quadratic forms,  SIR,  random matrices,  empirical distribution,  Stieltjes transform,  central limit theorem,  15A52,  62P30,  60F05,  62E20
@article{1211819800,
     author = {Pan, G. M. and Zhou, W.},
     title = {Central limit theorem for signal-to-interference ratio of reduced rank linear receiver},
     journal = {Ann. Appl. Probab.},
     volume = {18},
     number = {1},
     year = {2008},
     pages = { 1232-1270},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1211819800}
}
Pan, G. M.; Zhou, W. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab., Tome 18 (2008) no. 1, pp.  1232-1270. http://gdmltest.u-ga.fr/item/1211819800/