Geometric realizations of Wakimoto modules at the critical level
Frenkel, Edward ; Gaitsgory, Dennis
Duke Math. J., Tome 141 (2008) no. 1, p. 117-203 / Harvested from Project Euclid
We study the Wakimoto modules over the affine Kac-Moody algebras at the critical level from the point of view of the equivalences of categories proposed in our previous works, relating categories of representations and certain categories of sheaves. In particular, we explicitly describe geometric realizations of Wakimoto modules as Hecke eigen-D-modules on the affine Grassmannian and as quasi-coherent sheaves on the flag variety of the Langlands dual group
Publié le : 2008-05-15
Classification:  17B67,  81R10
@article{1211574665,
     author = {Frenkel, Edward and Gaitsgory, Dennis},
     title = {Geometric realizations of Wakimoto modules at the critical level},
     journal = {Duke Math. J.},
     volume = {141},
     number = {1},
     year = {2008},
     pages = { 117-203},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1211574665}
}
Frenkel, Edward; Gaitsgory, Dennis. Geometric realizations of Wakimoto modules at the critical level. Duke Math. J., Tome 141 (2008) no. 1, pp.  117-203. http://gdmltest.u-ga.fr/item/1211574665/