Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$ . The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the
lattice $\mathcal{P}$ is not Brouwerian.
Publié le : 2008-04-15
Classification:
mass problems,
intuitionism,
Brouwerian lattice,
Heyting algebra,
degrees of unsolvability,
03D30,
03D28,
03D80,
03B20,
03F55,
06D20
@article{1210859922,
author = {Simpson, Stephen G.},
title = {Mass Problems and Intuitionism},
journal = {Notre Dame J. Formal Logic},
volume = {49},
number = {1},
year = {2008},
pages = { 127-136},
language = {en},
url = {http://dml.mathdoc.fr/item/1210859922}
}
Simpson, Stephen G. Mass Problems and Intuitionism. Notre Dame J. Formal Logic, Tome 49 (2008) no. 1, pp. 127-136. http://gdmltest.u-ga.fr/item/1210859922/