Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in an $L\log L$
Benkirane, A. ; Youssfi, A. ; Meskine, D.
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 369-375 / Harvested from Project Euclid
In this paper, we prove $L^\infty$-regularity for solutions of some nonlinear elliptic equations with degenerate coercivity whose prototype is $$ \left\{\begin{array}{lll} {\rm-div}({\frac{1}{(1+|u|)^{\theta(p-1)}}}|\nabla u|^{p-2}{\nabla u})=f&{\rm in}&\Omega, \\ u=0&{\rm on}& \partial{\Omega}, \end{array} \right. $$ where $\Omega$ is a bounded open set in ${\rm \mathbb{R}^N}$, $N\geq 2$, $10.$
Publié le : 2008-05-15
Classification:  Zygmund spaces,  nonlinear elliptic equations,  $L^{\infty}$-estimates,  rearrangements,  35J70,  35J60,  46E30
@article{1210254830,
     author = {Benkirane, A. and Youssfi, A. and Meskine, D.},
     title = {Bounded solutions for nonlinear elliptic equations with
 degenerate coercivity and data in an $L\log L$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 369-375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1210254830}
}
Benkirane, A.; Youssfi, A.; Meskine, D. Bounded solutions for nonlinear elliptic equations with
 degenerate coercivity and data in an $L\log L$. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  369-375. http://gdmltest.u-ga.fr/item/1210254830/