Multiple periodic solutions of some Liénard equations with p-Laplacian
Bereanu, Cristian
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 277-285 / Harvested from Project Euclid
The existence, non-existence and multiplicity of solutions to periodic boundary value problems of Liénard type \begin{eqnarray*} (|u'|^{p-2}u')'+ f(u)u'+ g(u) = e(t) + s,\quad u(0)-u(T)=0=u'(0)-u'(T), \end{eqnarray*} is discussed, where $p>1,$ $f$ is arbitrary and $g$ is assumed to be bounded, positive and $g(\pm\infty)=0.$ The function $e$ is continuous on $[0,T]$ with mean value $0$ and $s$ is a parameter.
Publié le : 2008-05-15
Classification:  p-Laplacian,  Liénard equations,  periodic solutions,  Leray-Schauder degree,  34B15,  34B16,  34C25
@article{1210254825,
     author = {Bereanu, Cristian},
     title = {Multiple periodic solutions of some Li\'enard equations with p-Laplacian},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 277-285},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1210254825}
}
Bereanu, Cristian. Multiple periodic solutions of some Liénard equations with p-Laplacian. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  277-285. http://gdmltest.u-ga.fr/item/1210254825/