Let $M$ be an $n$-dimensional orientable compact
hypersurface in an $(n+1)$-dimensional real space form $\overline{M}(c)$, $n\geq 2$. If the lengths $\left\| R\right\| $, $\left\| A\right\| $ and
$\left\| \nabla \alpha \right\| $ of the curvature tensor field $R$, the
shape operator $A$, the gradient $\nabla \alpha $ of the mean curvature $\alpha $ and the scalar curvature $S$ of the hypersurface $M$ satisfy the
inequality
\begin{equation*}
\frac{1}{2}\left\| R\right\| ^{2}\leq cS+\delta \left\| A\right\|
^{2}-n(n-1)\left\| \nabla \alpha \right\| ^{2}
\end{equation*}
where $\delta =\min Ric=\underset{p\in M\quad v\in T_{p}M\quad \left\|
v\right\| =1}{\min }Ric_{p}(v)$, $Ric$ is Ricci curvature of the
hypersurface, then it is shown that $M$ is an extrinsic sphere in $\overline{M}(c)$. In particular we deduce that the condition $\frac{1}{2}\left\|
R\right\| ^{2}\leq \delta \left\| A\right\| ^{2}-n(n-1)\left\| \nabla \alpha
\right\| ^{2}$ characterizes spheres in the Euclidean space $R^{n+1}$ among
the compact orientable hypersurfaces whose Ricci curvatures are bounded
below by a constant $\delta >0$.