A Non-Resonant Generalized Multi-Point Boundary Value Problem of Dirichlet-Neumann Type involving a p-Laplacian type operator
Gupta, Chaitan P.
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 237-248 / Harvested from Project Euclid
Let $\phi $, $\theta $ be odd increasing homeomorphisms from $\mathbb{R}$ onto $\mathbb{R}$ satisfying $\phi (0)=\theta (0)=0$, $f:[0,1]\times \mathbb{R}\times \mathbb{R}\longrightarrow \mathbb{R}$ be a function satisfying Carathéodory conditions and $e:[0,1]\rightarrow \mathbb{R}$ be a function in $L^{1}[0,1]$. Let $\xi _{i}$,$\tau _{j}\in (0,1)$, $a_{i}$, $ b_{j}\in \mathbb{R}$, $i=1$, $2$, $\cdot \cdot \cdot $, $m-2$, $j$ $=$ $1$, $ 2$, $\cdot $ $\cdot $ $\cdot $, $n-2$, $0<\xi _{1}<\xi _{2}<\cdot \cdot \cdot <\xi _{m-2}<1$, $0<\tau _{1}<\tau _{2}<\cdot \cdot \cdot <\tau_{n-2}<1 $ be given. We study the problem of existence of solutions for the generalized multi-point boundary value problem \begin{gather} (\phi (x^{\prime }))^{\prime }=f(t,x,x^{\prime })+e\text{, }0
Publié le : 2008-05-15
Classification:  generalized multi-point boundary value problems,  $p-$Laplace type operator,  non-resonance,  a priori estimates,  topological degree,  34B10,  34B15,  34L30,  34.90
@article{1210254821,
     author = {Gupta, Chaitan P.},
     title = {A Non-Resonant Generalized Multi-Point Boundary Value Problem of
Dirichlet-Neumann Type involving a p-Laplacian type operator},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 237-248},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1210254821}
}
Gupta, Chaitan P. A Non-Resonant Generalized Multi-Point Boundary Value Problem of
Dirichlet-Neumann Type involving a p-Laplacian type operator. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  237-248. http://gdmltest.u-ga.fr/item/1210254821/