We obtain Gagliardo-Nirenberg interpolation inequalities of the
form $\| \nabla u\|_{X}\leq C_1\sqrt{\|
u|\|_{Y}\|\nabla^{(2)}u\|_Z}+C_2\| u\|_Y$, where $X,Y,Z$ are
Orlicz spaces related to a single measure which may not satisfy
the doubling condition. Some examples among homogeneous,
logarithmic and exponential spaces are given.
@article{1210254820,
author = {Ka\l amajska, Agnieszka and Pietruska-Pa\l uba, Katarzyna},
title = {Gagliardo-Nirenberg inequalities
in weighted Orlicz spaces equipped with a nonnecessarily
doubling measure},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {15},
number = {1},
year = {2008},
pages = { 217-235},
language = {en},
url = {http://dml.mathdoc.fr/item/1210254820}
}
Kałamajska, Agnieszka; Pietruska-Pałuba, Katarzyna. Gagliardo-Nirenberg inequalities
in weighted Orlicz spaces equipped with a nonnecessarily
doubling measure. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp. 217-235. http://gdmltest.u-ga.fr/item/1210254820/