Monodromy of Constant Mean Curvature Surface in Hyperbolic Space
Pirola, Gian Pietro
Asian J. Math., Tome 11 (2007) no. 4, p. 651-670 / Harvested from Project Euclid
In this paper we give a global version of the Bryant representation of surfaces of constant mean curvature one (cmc-1 surfaces) in hyperbolic space. This allows to set the associated non-abelian period problem in the framework of flat unitary vector bundles on Riemann surfaces. We use this machinery to prove the existence of certain cmc-1 surfaces having prescribed global monodromy.
Publié le : 2007-12-15
Classification:  Monodromy,  constant curvature,  hyperbolic space,  58E15
@article{1209735315,
     author = {Pirola, Gian Pietro},
     title = {Monodromy of Constant Mean Curvature Surface in Hyperbolic Space},
     journal = {Asian J. Math.},
     volume = {11},
     number = {4},
     year = {2007},
     pages = { 651-670},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1209735315}
}
Pirola, Gian Pietro. Monodromy of Constant Mean Curvature Surface in Hyperbolic Space. Asian J. Math., Tome 11 (2007) no. 4, pp.  651-670. http://gdmltest.u-ga.fr/item/1209735315/