An isoperimetric inequality on the ℓ p balls
Sodin, Sasha
Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, p. 362-373 / Harvested from Project Euclid
The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).
Publié le : 2008-04-15
Classification:  Isoperimetric inequalities,  Volume measure,  60E15,  28A75
@article{1207948224,
     author = {Sodin, Sasha},
     title = {An isoperimetric inequality on the l<sub>
 p
</sub> balls},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {44},
     number = {2},
     year = {2008},
     pages = { 362-373},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1207948224}
}
Sodin, Sasha. An isoperimetric inequality on the ℓ
 p
 balls. Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, pp.  362-373. http://gdmltest.u-ga.fr/item/1207948224/