Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder
Jara, M. D. ; Landim, C.
Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, p. 341-361 / Harvested from Project Euclid
For a sequence of i.i.d. random variables {ξx: x∈ℤ} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x+1) jumps to x+1 (resp. x) at rate ξx. We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder {ξx: x∈ℤ}. We prove that the position of the tagged particle converges under diffusive scaling to a Gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile ρ0 : ℝ→[0, 1].
Publié le : 2008-04-15
Classification:  Hydrodynamic limit,  Tagged particle,  Non-equilibrium fluctuations,  Random environment,  Fractional Brownian motion,  60K35
@article{1207948223,
     author = {Jara, M. D. and Landim, C.},
     title = {Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {44},
     number = {2},
     year = {2008},
     pages = { 341-361},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1207948223}
}
Jara, M. D.; Landim, C. Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist., Tome 44 (2008) no. 2, pp.  341-361. http://gdmltest.u-ga.fr/item/1207948223/