Let X be the unique normal martingale such that X0=0 and
¶
d[X]t=(1−t−Xt−) dXt+dt
¶
and let Yt:=Xt+t for all t≥0; the semimartingale Y arises in quantum probability, where it is the monotone-independent analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular, the level set {t≥0: Yt=1} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are found to be trivial except for that at level 1; consequently, the jumps of Y are not locally summable.