Logarithmic potentials, quasiconformal flows, and $Q$ -curvature
Bonk, Mario ; Heinonen, Juha ; Saksman, Eero
Duke Math. J., Tome 141 (2008) no. 1, p. 197-239 / Harvested from Project Euclid
By using quasiconformal flows, we establish that exponentials of logarithmic potentials of measures of small mass are comparable to Jacobians of quasiconformal homeomorphisms of $\mathbb{R}^n$ , $n\ge2$ . As an application, we obtain the fact that certain complete conformal deformations of an even-dimensional Euclidean space $\mathbb{R}^n$ with small total Paneitz or $Q$ -curvature are bi-Lipschitz equivalent to standard $\mathbb{R}^n$
Publié le : 2008-04-01
Classification:  30C65
@article{1206642154,
     author = {Bonk, Mario and Heinonen, Juha and Saksman, Eero},
     title = {Logarithmic potentials, quasiconformal flows, and $Q$ -curvature},
     journal = {Duke Math. J.},
     volume = {141},
     number = {1},
     year = {2008},
     pages = { 197-239},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1206642154}
}
Bonk, Mario; Heinonen, Juha; Saksman, Eero. Logarithmic potentials, quasiconformal flows, and $Q$ -curvature. Duke Math. J., Tome 141 (2008) no. 1, pp.  197-239. http://gdmltest.u-ga.fr/item/1206642154/