On Gauss’ formula for $\psi$ and finite expressions for the $L$ -series at 1
HASHIMOTO, Masahiro ; KANEMITSU, Shigeru ; TODA, Masayuki
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 219-236 / Harvested from Project Euclid
In this paper, we shall prove in Theorem 1 that Gauss’ famous closed formula for the values of the digamma function at rational arguments is equivalent to the well-known finite expression for the $L(1,\chi)$ , which in turn gives rise to the finite expression for the class number of quadratic fields. We shall also prove several equivalent expressions for the arithmetic function $N(q)$ introduced by Lehmer and reveal the relationships among them.
Publié le : 2008-01-15
Classification:  Gauss formula for the digamma function,  Dirichlet class number formula,  Hurwitz zeta-function,  Lehmer’s arithmetic function,  orthogonality of characters,  11R29,  33B15,  11R11
@article{1206367961,
     author = {HASHIMOTO, Masahiro and KANEMITSU, Shigeru and TODA, Masayuki},
     title = {On Gauss' formula for $\psi$ and finite expressions for the $L$ -series at 1},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 219-236},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1206367961}
}
HASHIMOTO, Masahiro; KANEMITSU, Shigeru; TODA, Masayuki. On Gauss’ formula for $\psi$ and finite expressions for the $L$ -series at 1. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  219-236. http://gdmltest.u-ga.fr/item/1206367961/