Linear stability of projected canonical curves with applications to the slope of fibred surfaces
BARJA, Miguel Ángel ; STOPPINO, Lidia
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 171-192 / Harvested from Project Euclid
Let $f: S\longrightarrow B$ be a non locally trivial relatively minimal fibred surface. We prove a lower bound for the slope of $f$ depending increasingly from the relative irregularity of $f$ and the Clifford index of the general fibres.
Publié le : 2008-01-15
Classification:  fibration,  slope,  relative irregularity,  Clifford index,  14H10,  14D06,  14J29
@article{1206367959,
     author = {BARJA, Miguel \'Angel and STOPPINO, Lidia},
     title = {Linear stability of projected canonical curves with applications to the slope of fibred surfaces},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 171-192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1206367959}
}
BARJA, Miguel Ángel; STOPPINO, Lidia. Linear stability of projected canonical curves with applications to the slope of fibred surfaces. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  171-192. http://gdmltest.u-ga.fr/item/1206367959/