Linear approximation for equations of motion of vibrating membrane with one parameter
KIKUCHI, Koji
J. Math. Soc. Japan, Tome 60 (2008) no. 1, p. 127-169 / Harvested from Project Euclid
This article treats a one parameter family of equations of motion of vibrating membrane whose energy functionals converge to the Dirichlet integral as the parameter $\varepsilon$ tends to zero. It is proved that both weak solutions satisfying energy inequality and generalized minimizing movements converge to a unique solution to the d’Alembert equation.
Publié le : 2008-01-15
Classification:  hyperbolic equations,  linear approximation,  BV functions,  minimizing movements,  varifolds,  35L70,  49J40,  49Q15
@article{1206367958,
     author = {KIKUCHI, Koji},
     title = {Linear approximation for equations of motion of vibrating membrane with one parameter},
     journal = {J. Math. Soc. Japan},
     volume = {60},
     number = {1},
     year = {2008},
     pages = { 127-169},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1206367958}
}
KIKUCHI, Koji. Linear approximation for equations of motion of vibrating membrane with one parameter. J. Math. Soc. Japan, Tome 60 (2008) no. 1, pp.  127-169. http://gdmltest.u-ga.fr/item/1206367958/