The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices
Onatski, Alexei
Ann. Appl. Probab., Tome 18 (2008) no. 1, p. 470-490 / Harvested from Project Euclid
This paper extends the work of El Karoui [Ann. Probab. 35 (2007) 663–714] which finds the Tracy–Widom limit for the largest eigenvalue of a nonsingular p-dimensional complex Wishart matrix Wp, n) to the case of several of the largest eigenvalues of the possibly singular (nℂ(Ωp, n). As a byproduct, we extend all results of Baik, Ben Arous and Peche [Ann. Probab. 33 (2005) 1643–1697] to the singular Wishart matrix case. We apply our findings to obtain a 95% confidence set for the number of common risk factors in excess stock returns.
Publié le : 2008-04-15
Classification:  Singular Wishart matrix,  Tracy–Widom distribution,  largest eigenvalues,  random matrix theory,  approximate factor model,  number of factors,  arbitrage pricing theory,  60F05,  62E20
@article{1206018194,
     author = {Onatski, Alexei},
     title = {The Tracy--Widom limit for the largest eigenvalues of singular complex Wishart matrices},
     journal = {Ann. Appl. Probab.},
     volume = {18},
     number = {1},
     year = {2008},
     pages = { 470-490},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1206018194}
}
Onatski, Alexei. The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices. Ann. Appl. Probab., Tome 18 (2008) no. 1, pp.  470-490. http://gdmltest.u-ga.fr/item/1206018194/