To study the numerical solutions of quasilinear elliptic equations on unbounded domains in two or three dimensional cases, we introduce a circular or spherical artificial boundary. Based on the Kirchhoff transformation and the Fourier series expansion, the exact artificial boundary condition and a series of its approximations of the given quasilinear elliptic problem are presented. Then the original problem is equivalently or approximately reduced to a bounded computational domain. The well-posedness of the reduced problems are proved and the convergence results of our numerical solutions on bounded computational domain are given