@article{120466, author = {Pavla \v Snyrychov\'a}, title = {Periodic points for maps in $\Bbb R\sp n$}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {42}, year = {2003}, pages = {87-104}, zbl = {1121.37304}, mrnumber = {2056024}, language = {en}, url = {http://dml.mathdoc.fr/item/120466} }
Šnyrychová, Pavla. Periodic points for maps in $\Bbb R\sp n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 42 (2003) pp. 87-104. http://gdmltest.u-ga.fr/item/120466/
Period three implications for expansive maps in $\mathbb R$, J. Difference Eqns. Appl., to appear. | MR 2033331
On a multivalued version to the Sharkovskii theorem and its application to differential inclusions, II. Preprint (2002). | MR 2036383
Introduction to the Dimensional Theory, Nauka, Moscow, 1973 (in Russian). (1973) | MR 0365524
A Topological Introduction to Nonlinear Analysis, Birkhäuser, Boston, 1993. (1993) | MR 1232418 | Zbl 0794.47034
Fixed Points Theory, PWN, Warzsawa, 1982. (1982)
Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999. (1999) | MR 1748378
Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, 1997. (1997) | MR 1485775
On fixed points of maps and iterated maps and applications, Nonlinear Analysis 42 (2000), 509-532. | MR 1775390 | Zbl 0967.37014
On Sharkovsky's cycle coexisting ordering, Bull. Austral. Math. Soc. 20 (1979), 171-177. (1979) | MR 0557223
Dynamical Systems, CRC Press, London, 1995. (1995) | MR 1396532 | Zbl 0853.58001
A Topologist’s View of Sharkovsky’s Theorem, Houston Journal of Mathematics 11, 3 (1985). (1985) | MR 0808654 | Zbl 0606.54031
Fixed Points, Amer. Math Soc., Providence, R.I., 1991. (1991) | Zbl 0762.54034
Sharkovskii theorem for multidimensional perturbations of onedimensional maps, II. Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169-182. (1999) | MR 1758885