A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems
Gamba, Ivo
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001), p. 55-62 / Harvested from Czech Digital Mathematics Library
Publié le : 2001-01-01
Classification:  34B15,  47H10
@article{120440,
     author = {Ivo Gamba},
     title = {A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {40},
     year = {2001},
     pages = {55-62},
     zbl = {1040.34022},
     mrnumber = {1904685},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120440}
}
Gamba, Ivo. A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) pp. 55-62. http://gdmltest.u-ga.fr/item/120440/

Andres J. A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray, Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. | MR 1664285 | Zbl 0964.34030

Andres J. Multiple bounded solutions of differential inclusions: the Nielsen theory approach, J. Diff. Eqs. 155 (1999), 285-320. (1999) | MR 1698556 | Zbl 0940.34008

Andres J.; Górniewicz L. From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory, Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. (1999) | MR 1766189 | Zbl 0958.34015

Andres J.; Górniewicz L.; Jezierski J. A generalized Nielsen number and multiplicity results for differential inclusion, Topol. Appl. 100 (2000), 143-209. | MR 1733044

Borsuk K. Theory of Retracts, PWN, Warsaw, 1967. (1967) | MR 0216473 | Zbl 0153.52905

Brown R. F. On the Nielsen fixed point theorem for compact maps, Duke. Math. J., 1968, 699-708. (1968) | MR 0250290

Brown R. F. Topological identification of multiple solutions to parametrized nonlinear equations, Pacific J. Math. 131 (1988), 51-69. (1988) | MR 0917865 | Zbl 0615.47042

Brown R. F. Nielsen fixed point theory and parametrized differential equations, In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. (1989) | MR 0956478

Cecchi M.; Furi M.; Marini M. About the solvability of ordinary differential equations with assymptotic boundary conditions, Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. (1985) | MR 0805224

Fečkan M. Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey, In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. | MR 1766782

Granas A. The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France 100 (1972), 209-228. (1972) | MR 0309102 | Zbl 0236.55004

Krasnosel’Skij M. A. The Operator of Translation along Trajectories of Differential Equations, Nauka, Moscow, 1966 (in Russian). (1966)