L p moduli of continuity of Gaussian processes and local times of symmetric Lévy processes
Marcus, Michael B. ; Rosen, Jay
Ann. Probab., Tome 36 (2008) no. 1, p. 594-622 / Harvested from Project Euclid
Let X={X(t), t∈R+} be a real-valued symmetric Lévy process with continuous local times {Ltx, (t, x)∈R+×R} and characteristic function EeiλX(t)=e−tψ(λ). Let ¶ \[\sigma_{0}^{2}(x-y)=\frac{4}{\pi}\int^{\infty}_{0}\frac{\sin^{2}({\lambda(x-y)}/{2})}{{\psi(\lambda)}}\,d\lambda.\] ¶ If σ02(h) is concave, and satisfies some additional very weak regularity conditions, then for any p≥1, and all t∈R+, ¶ \[\lim_{h\downarrow0}\int_{a}^{b}\biggl|{\frac{L^{x+h}_{t}-L^{x}_{t}}{\sigma_{0}(h)}}\biggr|^{p}\,dx=2^{p/2}E|\eta|^{p}\int_{a}^{b}|L^{x}_{t}|^{p/2}\,dx\] ¶ for all a, b in the extended real line almost surely, and also in Lm, m≥1. (Here η is a normal random variable with mean zero and variance one.) ¶ This result is obtained via the Eisenbaum Isomorphism Theorem and depends on the related result for Gaussian processes with stationary increments, {G(x), x∈R1}, for which E(G(x)−G(y))202(x−y); ¶ \[\lim_{h\to0}\int_{a}^{b}\biggl|\frac{G(x+h)-G(x)}{\sigma_{0}(h)}\biggr|^{p}\,dx=E|\eta|^{p}(b-a)\] ¶ for all a, b∈R1, almost surely.
Publié le : 2008-03-15
Classification:  Gaussian processes,  local times,  Levy processes,  60J55,  60G15,  60G17
@article{1204306961,
     author = {Marcus, Michael B. and Rosen, Jay},
     title = {L<sup>
 p
</sup> moduli of continuity of Gaussian processes and local times of symmetric L\'evy processes},
     journal = {Ann. Probab.},
     volume = {36},
     number = {1},
     year = {2008},
     pages = { 594-622},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204306961}
}
Marcus, Michael B.; Rosen, Jay. L
 p
 moduli of continuity of Gaussian processes and local times of symmetric Lévy processes. Ann. Probab., Tome 36 (2008) no. 1, pp.  594-622. http://gdmltest.u-ga.fr/item/1204306961/