Strong $A_{\infty}$-weights and scaling invariant Besov capacities
Costea, Șerban
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 1067-1114 / Harvested from Project Euclid
This article studies strong $A_{\infty}$-weights and Besov capacities as well as their relationship to Hausdorff measures. It is shown that in the Euclidean space ${\mathbb{R}}^n$ with $n\ge 2$, whenever $n-1 < s \le n$, a function $u$ yields a strong $A_\infty$-weight of the form $w=e^{nu}$ if the distributional gradient $\nabla u$ has sufficiently small $||\cdot||_{{\mathcal L}^{s,n-s}}({\mathbb{R}}^n; {\mathbb{R}}^n)$-norm. Similarly, it is proved that if $2\le n < p < \infty$, then $w=e^{nu}$ is a strong $A_\infty$-weight whenever the Besov $B_p$-seminorm $[u]_{B_p({\mathbb{R}}^n)}$ of $u$ is sufficiently small. Lower estimates of the Besov $B_p$-capacities are obtained in terms of the Hausdorff content associated with gauge functions $h$ satisfying the condition $\int_0^1 h(t)^{p'-1} \frac{dt}{t} < \infty$.
Publié le : 2007-12-15
Classification:  strong $A_{\infty}$-weights,  Besov spaces,  capacity,  46E35,  31C99,  30C99
@article{1204128311,
     author = {Costea, Serban},
     title = {Strong $A\_{\infty}$-weights and scaling invariant Besov capacities},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 1067-1114},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128311}
}
Costea, Șerban. Strong $A_{\infty}$-weights and scaling invariant Besov capacities. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  1067-1114. http://gdmltest.u-ga.fr/item/1204128311/