Weak type estimates associated to Burkholder's martingale inequality
Parcet, Javier
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 1011-1037 / Harvested from Project Euclid
Given a probability space $(\Omega, \mathsf{A}, \mu)$, let $\mathsf{A}_1, \mathsf{A}_2, \ldots$ be a filtration of $\sigma$-subalgebras of $\mathsf{A}$ and let $\mathsf{E}_1, \mathsf{E}_2, \ldots$ denote the corresponding family of conditional expectations. Given a martingale $f = (f_1, f_2, \ldots)$ adapted to this filtration and bounded in $L_p(\Omega)$ for some $2 \le p < \infty$, Burkholder's inequality claims that $$ \|f\|_p \sim_{\mathrm{c}_p} \Big\| \Big( \sum_{k=1}^\infty \mathsf{E}_{k-1}(|df_k|^2) \Big)^\frac12 \Big\|_p + \Big( \sum_{k=1}^\infty \|df_k\|_p^p \Big)^\frac1p. $$ Motivated by quantum probability, Junge and Xu recently extended this result to the range $1 < p < 2$. In this paper we study Burkholder's inequality for $p=1$, for which the techniques must be different. Quite surprisingly, we obtain two non-equivalent estimates which play the role of the weak type $(1,1)$ analog of Burkholder's inequality. As application we obtain new properties of Davis decomposition for martingales.
Publié le : 2007-12-15
Classification:  Burkholder martingale inequality,  Davis and Gundy decompositions,  42B25,  60G46,  60G50
@article{1204128309,
     author = {Parcet, Javier},
     title = {Weak type estimates associated to Burkholder's martingale inequality},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 1011-1037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128309}
}
Parcet, Javier. Weak type estimates associated to Burkholder's martingale inequality. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  1011-1037. http://gdmltest.u-ga.fr/item/1204128309/