Optimizing geometric measures for fixed minimal annulus and inradius
Hernández Cifre, María A. ; Herrero Piñeyro, Pedro J.
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 953-971 / Harvested from Project Euclid
In this paper we relate the minimal annulus of a planar convex body $K$ with its inradius, obtaining all the upper and lower bounds, in terms of these quantities, for the classic geometric measures associated with the set: area, perimeter, diameter, minimal width and circumradius. We prove the optimal inequalities for each one of those problems, determining also its corresponding extremal sets.
Publié le : 2007-12-15
Classification:  convex bodies,  minimal annulus,  inradius,  area,  perimeter,  circumradius,  diameter,  minimal width,  52A40,  52A10,  52A38
@article{1204128307,
     author = {Hern\'andez Cifre, Mar\'\i a A. and Herrero Pi\~neyro, Pedro J.},
     title = {Optimizing geometric measures for fixed minimal annulus and inradius},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 953-971},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128307}
}
Hernández Cifre, María A.; Herrero Piñeyro, Pedro J. Optimizing geometric measures for fixed minimal annulus and inradius. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  953-971. http://gdmltest.u-ga.fr/item/1204128307/