A universal Lipschitz extension property of Gromov hyperbolic spaces
Brudnyi, Alexander ; Brudnyi, Yuri
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 861-896 / Harvested from Project Euclid
A metric space $U$ has the universal Lipschitz extension property if for an arbitrary metric space $M$ and every subspace $S$ of $M$ isometric to a subspace of $U$ there exists a continuous linear extension of Banach-valued Lipschitz functions on $S$ to those on all of $M$. We show that the finite direct sum of Gromov hyperbolic spaces of bounded geometry is universal in the sense of this definition.
Publié le : 2007-12-15
Classification:  metric space,  Lipschitz function,  linear extension,  26B35,  54E35,  46B15
@article{1204128304,
     author = {Brudnyi, Alexander and Brudnyi, Yuri},
     title = {A universal Lipschitz extension property of Gromov hyperbolic spaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 861-896},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128304}
}
Brudnyi, Alexander; Brudnyi, Yuri. A universal Lipschitz extension property of Gromov hyperbolic spaces. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  861-896. http://gdmltest.u-ga.fr/item/1204128304/