The punishing factors for convex pairs are $2^{n-1}$
Avkhadiev, Farit G. ; Wirths, Karl-Joachim
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 847-860 / Harvested from Project Euclid
Let $\Omega$ and $\Pi$ be two simply connected proper subdomains of the complex plane $\mathbb{C}$. We are concerned with the set $A(\Omega,\Pi)$ of functions $f: \Omega\longrightarrow\Pi$ holomorphic on $\Omega$ and we prove estimates for $|f^{(n)}(z)|, f \in A(\Omega,\Pi), z \in \Omega$, of the following type. Let $\lambda_{\Omega}(z)$ and $\lambda_{\Pi}(w)$ denote the density of the Poincaré metric with curvature $K=-4$ of $\Omega$ at $z$ and of $\Pi$ at $w$, respectively. Then for any pair $(\Omega,\Pi)$ of convex domains, $f \in A(\Omega,\Pi), z \in \Omega$, and $n\geq 2$ the inequality $$ \frac{|f^{(n)}(z)|}{n!}\leq 2^{n-1}\frac{(\lambda_{\Omega}(z))^n}{\lambda_{\Pi}(f(z))} $$ is valid. The constant $2^{n-1}$ is best possible for any pair $(\Omega,\Pi)$ of convex domains. For any pair $(\Omega,\Pi)$, where $\Omega$ is convex and $\Pi$ linearly accessible, $f,z,n$ as above, we prove $$ \frac{|f^{(n)}(z)|}{(n+1)!}\leq 2^{n-2}\frac{(\lambda_{\Omega}(z))^n}{\lambda_{\Pi}(f(z))}. $$ The constant $2^{n-2}$ is best possible for certain admissible pairs $(\Omega,\Pi)$. These considerations lead to a new, nonanalytic, characterization of bijective convex functions $h:\Delta\to\Omega$ not using the second derivative of $h$.
Publié le : 2007-12-15
Classification:  convex domain,  linear accessible domain,  Taylor coefficients,  convex functions,  close-to-convex functions,  inverse functions,  bounded functions,  30C50,  30C45,  30D50
@article{1204128303,
     author = {Avkhadiev, Farit G. and Wirths, Karl-Joachim},
     title = {The punishing factors for convex pairs are $2^{n-1}$},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 847-860},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128303}
}
Avkhadiev, Farit G.; Wirths, Karl-Joachim. The punishing factors for convex pairs are $2^{n-1}$. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  847-860. http://gdmltest.u-ga.fr/item/1204128303/