Lipschitz conditions on the modulus of a harmonic function
Pavlović, Miroslav
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 831-845 / Harvested from Project Euclid
It is proved that if $u$ is a real valued function harmonic in the open unit ball $\mathbb B_N\subset \mathbb R^N$ and continuous on the closed ball, then the following conditions are equivalent, for $0 < \alpha < 1$: \begin{itemize} \item $|u(x)-u(w)|\le C|x-w|^\alpha, \quad x, w\in \mathbb B_N$; \item $| |u(y)|-|u(\zeta) | |\le C|y-\zeta|^\alpha, \quad y, \zeta\in \partial\mathbb B_N$; \item $| |u(y)|-|u(ry)| |\le C(1-r)^\alpha, \quad y\in \partial\mathbb B_N,\ 0 < r < 1$. \end{itemize} The Lipschitz condition on $|u|^p$ is also considered.
Publié le : 2007-12-15
Classification:  harmonic functions,  Lipschitz condition,  30A05,  30B05,  26A16
@article{1204128302,
     author = {Pavlovi\'c, Miroslav},
     title = {Lipschitz conditions on the modulus of a harmonic function},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 831-845},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128302}
}
Pavlović, Miroslav. Lipschitz conditions on the modulus of a harmonic function. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  831-845. http://gdmltest.u-ga.fr/item/1204128302/