On uniqueness of automorphisms groups of Riemann surfaces
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 793-810 / Harvested from Project Euclid
Let $\gamma, r, s$, $ \geq 1$ be non-negative integers. If $p$ is a prime sufficiently large relative to the values $\gamma$, $r$ and $s$, then a group $H$ of conformal automorphisms of a closed Riemann surface $S$ of order $p^{s}$ so that $S/H$ has signature $(\gamma,r)$ is the unique such subgroup in $\mathrm{Aut}(S)$. Explicit sharp lower bounds for $p$ in the case $(\gamma,r,s) \in \{(1,2,1),(0,4,1)\}$ are provided. Some consequences are also derived.
Publié le : 2007-12-15
Classification:  Riemann surfaces,  orbifolds,  Kleinian groups,  automorphisms,  30F10,  30F35,  30F40
@article{1204128300,
     author = {Leyton A. 
,  
Maximiliano and Hidalgo
, 
Rub\'en A.},
     title = {On uniqueness of automorphisms groups of Riemann surfaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 793-810},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128300}
}
Leyton A. 
,  
Maximiliano; Hidalgo
, 
Rubén A. On uniqueness of automorphisms groups of Riemann surfaces. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  793-810. http://gdmltest.u-ga.fr/item/1204128300/