The fractional maximal operator and fractional integrals on variable $L^p$ spaces
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 743-770 / Harvested from Project Euclid
We prove that if the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions locally and at infinity, then the fractional maximal operator $M_\alpha$, $0 < \alpha < n$, maps $L^{p(\cdot)}$ to $L^{q(\cdot)}$, where $\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\alpha}{n}$. We also prove a weak-type inequality corresponding to the weak $(1,n/(n-\alpha))$ inequality for $M_\alpha$. We build upon earlier work on the Hardy-Littlewood maximal operator by Cruz-Uribe, Fiorenza and Neugebauer [The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238]. As a consequence of these results for $M_\alpha$, we show that the fractional integral operator $I_\alpha$ satisfies the same norm inequalities. These in turn yield a generalization of the Sobolev embedding theorem to variable $L^p$ spaces.
Publié le : 2007-12-15
Classification:  fractional maximal operator,  fractional integral operator,  Sobolev embedding theorem,  variable Lebesgue space,  42B25,  42B35
@article{1204128298,
     author = {Capone
,  
Claudia and Cruz-Uribe, SFO 
,  
David and Fiorenza
,  
Alberto},
     title = {The fractional maximal operator and fractional integrals on variable $L^p$ spaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 743-770},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1204128298}
}
Capone
,  
Claudia; Cruz-Uribe, SFO 
,  
David; Fiorenza
,  
Alberto. The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  743-770. http://gdmltest.u-ga.fr/item/1204128298/