Multiple bifurcation in the solution set of the von Kármán equations with $S^{1}$-symmetries
Janczewska, Joanna
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 109-126 / Harvested from Project Euclid
In this work we study bifurcation of forms of equilibrium of a thin circular elastic plate lying on an elastic base under the action of a compressive force. The forms of equilibrium may be found as solutions of the von Kármán equations with two real positive parameters defined on the unit disk in $\mathbb R^2$ centered at the origin. These equations are equivalent to an operator equation $F(x,p)=0$ in the real Hölder spaces with a nonlinear $S^{1}$-equivariant Fredholm map of index $0$. For the existence of bifurcation at a point $(0,p)$ it is necessary that $\dim\operatorname{Ker}F_{x}^{\prime}(0,p)>0$. The space $\operatorname{Ker}F_{x}^{\prime}(0,p)$ can be at most four-dimensional. We apply the Crandall-Rabinowitz theorem to prove that if $\dim\operatorname{Ker}F_{x}^{\prime}(0,p)=3$ then there is bifurcation of radial solutions at $(0,p)$. What is more, using the Lyapunov-Schmidt finite-dimensional reduction we investigate the number of branches of radial bifurcation at $(0,p)$.
Publié le : 2008-02-15
Classification:  bifurcation,  Fredholm operator,  von Kármán equations,  $S^{1}$-symmetries,  34K18,  35Q72,  46T99
@article{1203692450,
     author = {Janczewska, Joanna},
     title = {Multiple bifurcation in the solution set of the von K\'arm\'an equations
with $S^{1}$-symmetries},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 109-126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203692450}
}
Janczewska, Joanna. Multiple bifurcation in the solution set of the von Kármán equations
with $S^{1}$-symmetries. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  109-126. http://gdmltest.u-ga.fr/item/1203692450/