Angles corniculaires et nombres superréels
Bair, J. ; Henry, V.
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 77-86 / Harvested from Project Euclid
Following the works of van Asch and van der Blij, we show that the horn angles introduced by Euclide can be measured by superreal numbers as Tall defined them. We deduce from this the possibility to estimate, on the one hand, the ratio of the measures of a horn angle and of the mixed angle formed by a spiral of Archimede and, on the other hand, the ratio of the measures of two horn angles.
Publié le : 2008-02-15
Classification:  horn angles,  nonstandard analysis,  superreal numbers,  26E35,  51M04
@article{1203692448,
     author = {Bair, J. and Henry, V.},
     title = {Angles corniculaires et nombres superr\'eels},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 77-86},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203692448}
}
Bair, J.; Henry, V. Angles corniculaires et nombres superréels. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  77-86. http://gdmltest.u-ga.fr/item/1203692448/