Cross-Ratios and 6-Figures in some Moufang-Klingenberg Planes
Akpinar, Atilla ; Celik, Basri ; Ciftci, Süleyman
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 49-64 / Harvested from Project Euclid
This paper deals with Moufang-Klingenberg planes $\boldsymbol{M}(\mathcal{A}) $ defined over a local\ alternative ring $\mathcal{A}$\ of dual numbers. The definition of cross-ratio is extended to $\boldsymbol{M}(\mathcal{A})$. Also, some properties of cross-ratios and 6-figures that arewell-known for Desarguesian planes are investigated in $\boldsymbol{M}(\mathcal{A})$; so we obtain relations between algebraic properties of $\mathcal{A}$ and geometric properties of $\boldsymbol{M}(\mathcal{A})$. In particular, we show that pairwise non-neighbour four points of the line $g$ are in harmonic position if and only if they are harmonic, and that $\mu $ is Menelaus or Ceva 6-figure if and only if $r\left( \mu \right) =-1$ or $r\left( \mu \right) =1, $ respectively.
Publié le : 2008-02-15
Classification:  Moufang-Klingenberg planes,  local alternative ring,  cross-ratio,  6-figure,  51C05,  51A35,  17D05
@article{1203692446,
     author = {Akpinar, Atilla and Celik, Basri and Ciftci, S\"uleyman},
     title = {Cross-Ratios and 6-Figures in some Moufang-Klingenberg Planes},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 49-64},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203692446}
}
Akpinar, Atilla; Celik, Basri; Ciftci, Süleyman. Cross-Ratios and 6-Figures in some Moufang-Klingenberg Planes. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  49-64. http://gdmltest.u-ga.fr/item/1203692446/