Dimension fractale d'attracteurs : cas du modèle de Hogg-Huberman
Akroune, Nourredine ; Fournier-Prunaret, Danièle
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 25-31 / Harvested from Project Euclid
In this work, we deal with the fractal dimension D of a chaotic attractor which is generated by a bidimensional endomorphism (the Hogg-Huberman model).Using a modified box-counting method, we study the numerical behavior of D with respect to the number n of points of the considered set.One establishes an important relation D=D(n) which is valid for other dynamical systems.
Publié le : 2008-02-15
Classification:  Dynamical system,  Chaotic attractor,  Fractal dimension,  37Exx,  37D45,  37L30,  28A80
@article{1203692444,
     author = {Akroune, Nourredine and Fournier-Prunaret, Dani\`ele},
     title = {Dimension fractale d'attracteurs : cas
du mod\`ele de Hogg-Huberman},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 25-31},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203692444}
}
Akroune, Nourredine; Fournier-Prunaret, Danièle. Dimension fractale d'attracteurs : cas
du modèle de Hogg-Huberman. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  25-31. http://gdmltest.u-ga.fr/item/1203692444/