In this work, we deal with the fractal dimension D of a chaotic attractor
which is generated by a bidimensional endomorphism (the Hogg-Huberman
model).Using a modified box-counting method, we study the numerical behavior
of D with respect to the number n of points of the considered set.One
establishes an important relation D=D(n) which is valid for other dynamical
systems.
@article{1203692444,
author = {Akroune, Nourredine and Fournier-Prunaret, Dani\`ele},
title = {Dimension fractale d'attracteurs : cas
du mod\`ele de Hogg-Huberman},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {15},
number = {1},
year = {2008},
pages = { 25-31},
language = {en},
url = {http://dml.mathdoc.fr/item/1203692444}
}
Akroune, Nourredine; Fournier-Prunaret, Danièle. Dimension fractale d'attracteurs : cas
du modèle de Hogg-Huberman. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp. 25-31. http://gdmltest.u-ga.fr/item/1203692444/