On the stability of a mixed $n$-dimensional quadratic functional equation
Chu, Hahng-Yun ; Kang, Dong Seung ; Rassias, Themistocles M.
Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, p. 9-24 / Harvested from Project Euclid
In this paper, we investigate the modified Hyers-Ulam stability of a mixed $n$-dimensional quadratic functional equation in Banach spaces and also Banach modules over a Banach algebra and a $C^*-$algebra. Finally, we study the stability using the alternative fixed point of the functional equation in Banach spaces: \begin{equation*} _{n-2}C_{m-2} f(\sum^n_{j=1} x_j) + _{n-2}C_{m-1}\sum^n_{i=1} f(x_i) =\sum_{1\leq i_1 < \cdots < i_m \leq n} f(x_{i_1}+\cdots+x_{i_m}), \end{equation*} for all $x_j (j=1,\cdots,n)$ where $n\geq 3$ is an integer number and $2\leq m \leq n-1.$
Publié le : 2008-02-15
Classification:  Hyers-Ulam-Rassias Stability,  Quadratic mapping,  39B52
@article{1203692443,
     author = {Chu, Hahng-Yun and Kang, Dong Seung and Rassias, Themistocles M.},
     title = {On the stability of a mixed $n$-dimensional quadratic functional equation},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {15},
     number = {1},
     year = {2008},
     pages = { 9-24},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1203692443}
}
Chu, Hahng-Yun; Kang, Dong Seung; Rassias, Themistocles M. On the stability of a mixed $n$-dimensional quadratic functional equation. Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 1, pp.  9-24. http://gdmltest.u-ga.fr/item/1203692443/