@article{120342, author = {Stan\v ek, Svatoslav}, title = {Solvability of nonlinear functional boundary value problems}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {35}, year = {1996}, pages = {149-158}, zbl = {0968.34009}, mrnumber = {1485052}, language = {en}, url = {http://dml.mathdoc.fr/item/120342} }
Staněk, Svatoslav. Solvability of nonlinear functional boundary value problems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 35 (1996) pp. 149-158. http://gdmltest.u-ga.fr/item/120342/
Nonlinear Functional Analysis, Springer, Berlin-Heidelberg, 1985. (1985) | MR 0787404 | Zbl 0559.47040
Solvability of a three-point boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992), 540-551. (1992) | MR 1176010
A note on a second order three-point boundary value problem, J. Math. Anal. Appl. 186 (1994), 277-281. (1994) | MR 1290657 | Zbl 0805.34017
Inequalities, Cambridge Univ. Press, London-New York, 1967. (1967)
Disconjugacy and multipoint boundary value problems for linear differential equations with delay, Czech. Math. J. 114, 39 (1989), 70-77. (1989) | MR 0983484 | Zbl 0689.34058
Tests for disconjugacy and strict disconjugacy of linear differential equations with delays, Czech. Math. J. 114, 39 (1989), 225-231. (1989) | MR 0992129 | Zbl 0703.34072
On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay, Arch. Math. (Brno), 26, 4 (1990), 207-214. (1990) | MR 1188972
A remark on a second-order three-point boundary value problem, J. Math. Anal. Appl. 183 (1994), 518-522. (1994) | MR 1274852 | Zbl 0801.34025
Topological Degree Methods in Nonlinear Boundary Value Problems, In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. (1979) | MR 0525202 | Zbl 0414.34025
An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. (1990) | MR 1116184
On some boundary value problems for second order functional differential equations, Nonlin. Anal. (in press). | Zbl 0873.34053
Leray-Schauder degree method in one-parameter functional boundary value problem, Ann. Math. Silesianae, Katowice (in press).