@article{120336, author = {J\'an Andres and Tom\'a\v s Tursk\'y}, title = {On the method of Esclangon}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {35}, year = {1996}, pages = {7-20}, zbl = {0974.34030}, mrnumber = {1485038}, language = {en}, url = {http://dml.mathdoc.fr/item/120336} }
Andres, Ján; Turský, Tomáš. On the method of Esclangon. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 35 (1996) pp. 7-20. http://gdmltest.u-ga.fr/item/120336/
Lagrange stability of higher-order analogy of damped pendulum equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 154-159. (1992) | Zbl 0823.70018
On the problem of Hurwitz for shifted polynomials, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 160-164 (Czech). (1992)
Asymptotic estimates of solutions and their derivatives of nth-order nonhomogeneous ordinary differential equations with constant coefficients, Discussiones Math. 16, 1 (1996). (1996) | MR 1429037
Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. Ist. Mat. Univ. Trieste 21, 1 (1989), 128-143. (1989) | MR 1142529 | Zbl 0753.34020
Theory of Liapunov Exponents, Nauka, Moscow, 1966 (Russian). (1966)
Asymptotic Behavior and Stability Problems in Ordinary Differetial Equations, Springer, Berlin, 1959. (1959) | MR 0118904
Sur les intégrales bornées d’une équation différentielle linéaire, C R. Ac. de Sc., Paris 160 (1915), 775-778. (1915)
Calculation of linear stability boundaries for equilibria of Hamiltonian systems, Phys. Lett. A 122, 6, 7 (1987), 331-334. (1987) | MR 0897488
Asymptotic properties of solutions of the fifth-order nonhomogenons differential equations with constant coefficients, Mgr. Thesis, Faculty of Science, Palacký University, Olomouc, 1993 (Czech). (1993)
Nonlineаr Almost Periodic Oscillаtions, Nauka, Moscow, 1970 (Russian). (1970)
Almost-Periodic Functions, GITTL, Moscow, 1953 (Russian). (1953) | MR 0060629 | Zbl 1222.42002
Algebrа II (Theorie der аlgebrаischen Gleichungen), W. de Gruyter & Co., Berlin-Leipzig, 1933. (1933)