@article{120325, author = {Stan\v ek, Svatoslav}, title = {An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {34}, year = {1995}, pages = {155-166}, zbl = {0858.34020}, mrnumber = {1447264}, language = {en}, url = {http://dml.mathdoc.fr/item/120325} }
Staněk, Svatoslav. An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 34 (1995) pp. 155-166. http://gdmltest.u-ga.fr/item/120325/
The Picard boundary value problem for nonlinear second order vector differential equations, J. Differential Equations 42 (1981), 186-198. (1981) | MR 0641647 | Zbl 0439.34018
Ordinary Differential Equations, Wiley-Interscience, New York, 1964. (1964) | MR 0171038 | Zbl 0125.32102
On certain boundary value problem for third order differential equations, An. st. Univ. Iasi, f. 1, s. Ia, Mat. (1986), 61-74. (1986)
Three-point boundary value problem for nonlinear third-order differential equations with parameter, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 100, Math. 30 (1991), 61-74. (1991) | MR 1166426
On a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter, Arch. Math. 62 (1994), 462-469. (1994) | MR 1274754 | Zbl 0801.34065
Leray-Schauder degree method in functional boundary value problems depending on the parameter, Math. Nach. 164 (1993), 333-344. (1993) | MR 1251473 | Zbl 0805.34053