@article{120309, author = {Ji\v r\'\i\ Van\v zura and Alena Van\v zurov\'a}, title = {Polynomial mappings of polynomial structures with simple roots}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, volume = {33}, year = {1994}, pages = {157-164}, zbl = {0854.53024}, mrnumber = {1385756}, language = {en}, url = {http://dml.mathdoc.fr/item/120309} }
Vanžura, Jiří; Vanžurová, Alena. Polynomial mappings of polynomial structures with simple roots. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 33 (1994) pp. 157-164. http://gdmltest.u-ga.fr/item/120309/
Some algebraically related almost complex and almost tangent structures on differentiable manifolds, Coll. Math. Soc. J. Bolyai, 31 Diff. Geom., Budapest 1979, 119-124. (1979)
Simultaneous integrability of an almost complex and almost tangent structure, Czech. Math. Jour., 32 (107), 1982, 556-581. (1982) | MR 0682132
Polynomial structures on manifolds, Ködai Math. Sem. Rep. 22, 1970, 199-218. (1970) | MR 0267478 | Zbl 0194.52702
Normal structure $f$ satisfying $f^3 + f = 0$, Ködai Math. Sem. Rep. 18, 1966, 36-47. (1966) | MR 0210023
Simultaneous integrability of two J-related almost tangent structures, CMUC (Praha) 20, 3, 1979, 461-473. (1979) | MR 0550448 | Zbl 0436.53032
Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent, Ann. Inst. Fourier 16, 2, Grenoble 1966, 329-387. (1966) | MR 0212720 | Zbl 0145.42103
Almost product and almost complex structures generated by polynomial structures, Acta Math. Jagellon. Univ. XXIV, 1984, 27-31. (1984) | MR 0815882 | Zbl 0582.53032
Integrability conditions for polynomial structures, Ködai Math. Sem. Rep. 27, 1976, 42-50 (1976) | MR 0400106
Polynomial structures on manifolds, Ph.D. thesis, 1974. (1974)
On polynomial structures and their G-structures, (to appear).
On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$, 99-109. | MR 0159296